Yuxi Pang 1,2Qiang Ji 1,2Shaonian Ma 1,2Xian Zhao 1,2[ ... ]Yanping Xu 1,2,*
Author Affiliations
Abstract
1 Shandong University, Center for Optics Research and Engineering, Qingdao, China
2 Shandong University, Key Laboratory of Laser and Infrared System of the Ministry of Education, Qingdao, China
3 Shandong University, School of Information Science and Engineering, Qingdao, China
4 National Research Council Canada, Ottawa, Canada
5 University of Ottawa, Physics Department, Ottawa, Canada
The optical rogue wave (RW), known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities, plays an important role in revealing and understanding the fundamental physics of nonlinear wave propagations in optical systems. The random fiber laser (RFL), featured with cavity-free and “modeless” structure, has opened up new avenues for fundamental physics research and potential practical applications combining nonlinear optics and laser physics. Here, the extreme event of optical RW induced by noise-driven modulation instability that interacts with the cascaded stimulated Brillouin scattering, the quasi-phase-matched four-wave mixing as well as the random mode resonance process is observed in a Brillouin random fiber laser comb (BRFLC). Temporal and statistical characteristics of the RWs concerning their emergence and evolution are experimentally explored and analyzed. Specifically, temporally localized structures with high intensities including chair-like pulses with a sharp leading edge followed by a trailing plateau appear frequently in the BRFLC output, which can evolve to chair-like RW pulses with adjustable pulse duration and amplitude under controlled conditions. This investigation provides a deep insight into the extreme event of RWs and paves the way for RW manipulation for its generation and elimination in RFLs through adapted laser configuration.
optical rogue wave modulation instability random fiber laser cascaded stimulated Brillouin scattering four-wave mixing temporally localized structure 
Advanced Photonics Nexus
2024, 3(2): 026008
Author Affiliations
Abstract
Nexus for Quantum Technologies, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
A Brillouin dynamic grating (BDG) can be used for distributed birefringence measurement in optical fibers, offering high sensitivity and spatial resolution for sensing applications. However, it is quite a challenge to simultaneously achieve dynamic measurements with both high accuracy and high spatial resolution. In this work, we propose a sensing mechanism to achieve distributed phase-matching measurement using a chirped pulse as a probe signal. In BDG reflection, the peak reflection corresponds to the highest four-wave mixing (FWM) conversion efficiency, and it requires the Brillouin frequency in the fast and slow axes to be equal, which is called the phase-matching condition. This condition changes at different fiber positions, which requires a range of frequency injection for the probe wave. The proposed method uses a chirped pulse as a probe wave to cover this frequency range associated with distributed birefringence inhomogeneity. This allows us to detect distributed phase matching for birefringence changes that are introduced by temperature and strain variations. Thanks to the single shot and direct time delay measurement capability, the acquisition rate in our system is only limited by the fiber length. Notably, unlike conventional BDG spectrum recovery-based systems, the spatial resolution here is determined by both the frequency chirping rate of the probe pulse and the birefringence profile of the fiber. In the experiments, an acquisition rate of 1 kHz (up to fiber length limits) and a spatial resolution of 10 cm using a 20 ns probe pulse width are achieved. The minimum detectable temperature and strain variation are 5.6 mK and 0.37 με along a 2 km long polarization-maintaining fiber (PMF).
Photonics Research
2024, 12(1): 141
Author Affiliations
Abstract
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
2 Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Replica symmetry breaking (RSB), as a featured phase transition between paramagnetic and spin glass state in magnetic systems, has been predicted and validated among random laser-based complex systems, which involves numerous random modes interplayed via gain competition and exhibits disorder-induced frustration for glass behavior. However, the dynamics of RSB phase transition involving micro-state evolution of a photonic complex system have never been well investigated. Here, we report experimental evidence of transient RSB in a Brillouin random fiber laser (BRFL)-based photonic system through high-resolution unveiling of random laser mode landscape based on heterodyne technique. Thanks to the prolonged lifetime of activated random modes in BRFLs, an elaborated mapping of time-dependent statistics of the Parisi overlap parameter in both time and frequency domains was timely resolved, attributing to a compelling analogy between the transient RSB dynamics and the random mode evolution. These findings highlight that BRFL-based systems with the flexible harness of a customized photonic complex platform allow a superb opportunity for time-resolved transient RSB observation, opening new avenues in exploring fundamentals and application of complex systems and nonlinear phenomena.
PhotoniX
2023, 4(1): 33
Author Affiliations
Abstract
1 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
2 Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
Distributed time-domain Brillouin scattering fiber sensors have been widely used to measure the changes of the temperature and strain. The linear dependence of the temperature and strain on the Brillouin frequency shift enabled the distributed temperature and strain sensing based on mapping of the Brillouin gain spectrum. In addition, an acoustic wave can be detected by the four wave mixing (FWM) associated SBS process, in which phase matching condition is satisfied via up-down conversion of SBS process through birefringence matching before and after the conversion process. Brillouin scattering can be considered as the scattering of a pump wave from a moving grating (acoustic phonon) which induces a Doppler frequency shift in the resulting Stokes wave. The frequency shift is dependent on many factors including the velocity of sound in the scattering medium as well as the index of refraction. Such a process can be used to monitor the gain of random fiber laser based on SBS, the distributed acoustic wave reflect the distributed SBS gain for random lasing radiation, as well as the relative intensity noise inside the laser gain medium. In this review paper, the distributed time-domain sensing system based on Brillouin scattering including Brillouin optical time-domain reflectometry (BOTDR), Brillouin optical time-domain analysis (BOTDA), and FWM enhanced SBS for acoustic wave detection are introduced for their working principles and recent progress. The distributed Brillouin sensors based on specialty fibers for simultaneous temperature and strain measurement are summarized. Applications for the Brillouin scattering time-domain sensors are briefly discussed.
PhotoniX
2021, 2(1): 14
Author Affiliations
Abstract
Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
The interaction of random laser and gain medium is important to understand the noise origin in random fiber lasers. Here, using the optical time domain reflectometry method, the time-resolved distributed acoustic wave generated by a Brillouin random fiber laser (BRFL) is characterized. The dynamic property of the acoustic wave reflects the gain dynamics of the BRFL. The principle is based on the polarization-decoupled stimulated Brillouin scattering (SBS)-enhanced four-wave mixing process, where the probe light experiences maximum reflection when the phase match condition is satisfied. Static measurements present exponentially depleted Brillouin gain along the gain medium in the BRFL, indicating the localized random SBS frequency change in the maximum local gain region, which varies with time to contribute random laser noise as revealed in the dynamic measurement. The SBS-induced birefringence change in the Brillouin gain fiber is approximately 10-7 to 10-6. The phase noise of the BRFL is observed directly inside the random laser gain medium for the first time via time and spatially varied acoustic wave intensity. By counting the temporal intensity statistical distribution, optical rogue waves are detected near the lasing threshold of the BRFL. Different temporal intensity statistical distribution at high and low gain positions is found, which is caused by the SBS nonlinear transfer function and localized gain. The distributed characterization methods in the paper provide a new platform to study the interaction of random lasers and gain medium, giving us a new perspective to understand the fundamental physics of the random lasing process and its noise property.
Photonics Research
2021, 9(5): 05000772
Author Affiliations
Abstract
1 Key Lab of Advanced Transducers and Intelligent Control Systems, Ministry of Education and Shanxi Province, Taiyuan 030024, China
2 Institute of Optoelectronic Engineering, College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
3 Fiber Optics Group, Department of Physics, University of Ottawa, Ottawa K1N 6N5, Canada
To obtain high spatial resolution over a long sensing distance in Brillouin optical correlation domain reflectometry (BOCDR), a broad laser spectrum and high pump power are used to improve the signal-to-noise ratio (SNR). In this Letter, we use a noise-modulated laser to study the variation of the Brillouin spectrum bandwidth and its impact on the coherent length of BOCDR quantitatively. The result shows that the best spatial resolution (lowest coherent length) is achieved by the lowest pump power with the highest noise-modulation spectrum. Temperature-induced changes in the Brillouin frequency shift along a 253.1 m fiber are demonstrated with a 19 cm spatial resolution.
060.2370 Fiber optics sensors 060.4080 Modulation 120.5820 Scattering measurements 
Chinese Optics Letters
2017, 15(8): 080603
Author Affiliations
Abstract
Department of Physics, University of Ottawa, Ottawa, ON, K1S5G5, Canada
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
Optical fiber sensors phase-sensitive optical time domain reflectometry vibration 
Photonic Sensors
2016, 6(3): 199
Author Affiliations
Abstract
1 Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
2 National Research Council Canada, Ottawa, ON K1A 0R6, Canada
3 Institute of Lightwave Technology, School of Information Science and Technology, Xiamen University, Xiamen, 361005, China
A new approach utilizing effects of dispersion in the high-order-mode fibers (HOMFs) to effectively discriminate changes in environmental temperature and axial strain is proposed and experimentally demonstrated. Experimental characterization of a HOMF-based fiber modal interferometer with a sandwich fiber structure exhibits excellent agreements with numerical simulation results. A Fourier transform method of interferometry in the spatial frequency domain is adopted to distinguish mode coupling between different core-guided modes. Distinct phase sensitivities of multiple dispersion peaks are extracted by employing a novel phase demodulation scheme to realize dual-parameter sensing.
Optical fiber sensor temperature and strain discrimination dispersion 
Photonic Sensors
2015, 5(3): 224
Author Affiliations
Abstract
Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
The most general model of elliptical birefringence in an optical fiber has been developed for a steady-state and transient stimulated Brillouin scattering interaction. The impact of the elliptical birefringence is to induce a Brillouin frequency shift and distort the Brillouin spectrum—which varies with different light polarizations and pulsewidths. The model investigates the effects of birefringence and the corresponding evolution of spectral distortion effects along the fiber, providing a valuable prediction tool for distributed sensing applications.
Fiber optics Nonlinear optics, fibers Birefringence Polarization Scattering, stimulated Brillouin 
Photonics Research
2014, 2(5): 05000126
Author Affiliations
Abstract
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
The most general model of elliptical birefringence in an optical fiber is extended to describe a transient Brillouin interaction including both gain and loss. The effects of elliptical birefringence cause a Brillouin spectral shape distortion, which is detrimental for fiber sensing techniques. The model investigates the effects of birefringence and the corresponding evolution of spectral distortion effects along the fiber, and also investigates regimes where this distortion is minimal.
310.5448 Polarization, other optical properties 290.5900 Scattering, stimulated Brillouin 290.5830 Scattering, Brillouin 190.4370 Nonlinear optics, fibers 
Chinese Optics Letters
2014, 12(12): 123101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!